Machine Learning in Pratica: Decision Tree in Python con Scikit

In questo articolo spiegherò come fare una analisi basilare di un dataset da me creato e di come applicare il modello di Decision Tree con Python. Ho utilizzato Scikit e Pandas per la parte di analisi dati e dataframe, per la parte relativa ai grafici ho scoperto ultimamente questa libreria Seaborn che va a sostituire a matplotlib.

Il dataset che prendo in considerazione è stato costruito da me facendo un semplice scraping della pagina di ogni regione di Booking.com . Dopo avere effettuato lo scraping, fatto a mano dal sito, ho preso ogni singola città e ne ho categorizzato un tipo possibile di turismo.
Esso è costituito da: Nome città, regione, Hotel, Latitudine, Longitudine, tipo di turismo
Nella pratica considero tutte le regioni italiane e elenco le prime 25 città per numero di hotel. Il dataset è disponibile in fondo al blogpost.

L’analisi che farò sarà quella di creare dei Decision Tree sul dataset in base al tipo di turismo, usando più o meno diverse feature in tre casi differenti e vedendo quale dei tre casi funziona meglio. Infine userò le funzioni interne delle librerie di scikit per creare la grafica.
Ecco il gist contenente tutti procedimenti commentati passo passo.

Ecco ora il dataset che ho usato per la mia analisi dei dati. Lo potete usare sotto licenza GPL v2

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *